#### **Dynamic** dissipation



#### www.elecdan-converter.com



Case 1 250cm<sup>3</sup> / 380g



Case 2 100cm<sup>3</sup> / 290q





Reinforced passive dissipation

Case 4 1000cm<sup>3</sup> / 1150q (Case 2 + dissipator "225")

## Standard passive dissipation

Case 3 500cm<sup>3</sup> / 700g (Case 2 + dissipator "112")

## **0** Goal

Able to convert a low voltage into higher voltage, within a reduced volume, and with a high efficiency (from 92 to more than 98%), these step-up can advantageously replace conventional dc/dc converters (2) when input/output insulation is not required. Moreover, if your starting current is very high, our technique of elevation enables the switching - almost directly and immediately - from the source (battery) to the load, while a typical converter can collapse. Reinforced switch diode available on request. > To transform a 12V battery into a powerful stabilized generator 15V / 900W or 24V / 576W Examples:

- > To power a vehicle with 24V/600W from the 10 to 20V of its fuel-cell
- > To operate a solar pump at constant speed, under 24V/1.2kW, from 18 to 23V
- ➤ To stabilize, at 400V/2kW, a 370V generator whose voltage varies from 345V to 395V
- > To overcome the high starting current of an engine (ex: Maxon 24V / 9.15A / 212A) from a 12V battery

# **2** General presentation

The active part of the regulator (i.e. not counting high-performance screw connectors for wires of section ≤ 72mm²) measures 64 x 64 mm, and is thus compatible with regular half-brick modules. Depending on the cooling method (dynamic or passive) chosen by the customer when ordering, the complete regulator shall have one of the 4 following shapes:

1 Integrated dynamic cooling Case 1: equipped with a small built-in fan, fast racking-out for fan replacement directly by the user after 50,000 hours (this case 0 is 4 times smaller than case 0, which is of the same power but cooled by natural convection)

2 Independant passive dissipation Case 2: the user places the elevator's thermal interface against a heat conducting wall whose thermal resistance is ≤ 1.5°/W

3 Standard passive dissipation Case 3: case 2 equipped with a "112" dissipator can be mounted on DIN rail; enhanced cooling if the whole unit is screwed on a heat conducting wall <u>N.B.</u>: the picture represents the regulator  $\odot$  deeply embedded in its "112" dissipator

Reinforced passive dissipation With "225" dissipator (2 times longer than "112", same section)

(1) patent registration: 2012; trademark: 2014 (2) see also our isolated dc/dc converters, from 15W to 2kW, and our analog signal converters

#### 6 Electrical data

- > Power output (Pout): from 500W up to 2.32kW with twelve product references
- ➤ Input voltage "Vin": ranging from 10V to 400V dc depending on the unit as seen on table 10
- > Common input and output, occupying the 2 "-" connection terminals
- > Output voltage "Vout": ranging from de 15V to 400V (always higher than the maximum input voltage)
- ▶ Input currents: 95A max (unit 10V to 14V → 15V / 900W)
- No-load current: ≤ 6W / Vin; fan's power on case ①: ≈5W
- ➤ Minimum load current: zero to ≤100mA depending on the model
- ➤ Line+load regulation: better than 2%; dynamic answer < 5% / <50ms
- ➤ Efficiency at full load: 92% to >98%, depending on the model
- > Ripple: less than 1% of Vout; fixed switching frequency > 200kHz

#### 4 Protections

- ➤ Limited overloads: as long as decreasing Vout remains ≥ Vin + 0.5V
- > Abnormal overloads: please add a fuse or current-limiter on the output or input
- > Under-voltage or sufficient input over-voltage: the regulator no longer elevates the input voltage
- > Filters: input and output; shields: two parallel metallic plates
- ➤ Thermal protection: lowering of Vout to ≈ Vin 0.5V (automatic reset)
- ➤ Vibrations, tropicalisation, iP63 to iP67 sealing, except the fan. *Stainless* steel for the high-performance wire-connectors
- ➤ Ohmic wire loss reduction, with connectors receiving sections up to 72mm²
- > The dynamic dissipation model is equipped with a highly reliable fan (50,000 hours)

## 5 Thermal characteristics (see table 13) with curves to read losses depending on ambient temperature)

- ➤ All models can work with ambient temperature from -40°C up to +90°C at decreasing power (except the dynamic dissipation model: from -30°C to +70°C)
- ➤ Models ①, ③ and ④ can work at half-power when the temperature ≥ 60°C
- ➤ Storage temperature: -40°C to +100°C for models ②, ③ and ④
- ➤ Temperature coefficient: 2.10<sup>-4</sup> / °C

# **6** Options on request

- ➤ Remote sensing: 2 miniature connection points
- > Shifting of the input range: 3 connections (please contact us for further details)
- ➤ Other input and output voltages ≤ 400V
- > Other output powers, below 2.32kW
- ▶ Inhibition of the "step-up" function: 2 connections
- Control of the current limitation on the "step-up" range
- Customizable colors and texts for cases
- Reinforced switch diode for very high starting current

# Mechanical presentation: 4 configurations (see 2+ 1 and the 4 pictures below)

- > Case 10 250cm<sup>3</sup> / 380g / 96 x 64 x thickness 61 mm; equipped with an integrated dynamic cooling
- Case 2 100cm<sup>3</sup> / 290g / 92 x 64 x thickness 40 mm; *alone* (without dissipator); screwable on a functional dissipating wall or on one of the two available dissipators (length 112.6mm or 225.2mm)
- $\triangleright$  Case 3 500cm<sup>3</sup> / 700g / 112.6 x 120 x thickness 47 mm; case 2 deeply *embedded* in the **short** dissipator; with clip on the back for DIN rail  $\Omega$  (or with lateral side clip upon request)
- Case @ 1000cm³ / 1150g / 225.2 x 120 x thickness 47 mm; case ② deeply embedded in the long dissipator; with clip on the back for DIN rail Ω (or with lateral side clip upon request)

#### 8 Mechanical specifications

- > Connections through large high-performance connectors enabling wire sections up to 72mm<sup>2</sup>
- Fan (MTBF 50,000 h) included in case ① "250cm3": easily dismountable
- > All cases can be fixed on a wall with two screws (center distances: 85/90/48.2 x 50.8mm)
- > High volume saving if the user already has a thermally dissipating functional wall

### Standards and specifications

- > Marking CE/UL 60950-1 / EN 60950-1 / iEC 60950-1 / RoHS / 55022A if optional external filter
- > Flammability: horizontal test for electrical applications, according to UL 94 HB standard
- > MTBF (case at 50°C): passive dissipation models >120,000 hours / dynamic version with fan: 50,000 hours
- > Worldwide manufacturers for active parts. Patent, assembling and final controls: ELECDAN Converter

#### Maximum ambient temperature for the 4 models, depending on losses. Result from graphic display or lineal equation. Admissible losses depending on the ambient temperature To $-30^{\circ}\text{C} \le \text{T}^{\circ} \le 70^{\circ}\text{C}$ ; $P(W) = 90W - T^{\circ}$ / thermal resistance pertes (W) 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 **Dynamic** cooling 10 case Thermal resistance 1°C/W 8 6 4 2 -30 70 40 60 Tamb (°C) $P(W) = 60W - T^{\circ} / 1.5^{\circ}C/W$ pertes (W) 40 boîtier 🕄 38 ventilé 2m/s (1°C / W) 36 ❸ 34 32 $P(W) = 90W - T^{\circ} / 1^{\circ}C/W$ 30 28 26 24 22 P(W) =20 15W - T° / 6°C/W 18 assive dissipation 16 case 3 Thermal resistance 1.5°C/W 14 12 10 8 6 4 Case ② independant 2 Thermal resistance 6°C/W -40 40 45 50 70 75 80 Tamb (°C) Admissible losses depending on the ambient temperature To pertes (W) $50^{\circ}C \le T^{\circ} \le 90^{\circ}C : P(W) = 90W - T^{\circ} / 1^{\circ}C / W$ 40 boîtier 4 38 ventilé 2m/s (0,75°C / W) 36 34 32 30 P(W) =28 120W - T°/0,75°C/W 26 24 22 20 18 Passive dissipation 16 case 🐠 14 Thermal resistance 1°C/W 12 10 8 6 4 -40 Tamb (°C)

| 1 | Step-Up | Voltage | Regu | lator | 500W to | 2.32kW | and main | SKU |
|---|---------|---------|------|-------|---------|--------|----------|-----|
|   | 1       | Output  | 2    | 3     | 4       | 5      | SKII     | 6   |

|     | Input                  | Output 2       |                | 3<br>Power    | 4          | 5<br>Max.   | SKU 6                                         |
|-----|------------------------|----------------|----------------|---------------|------------|-------------|-----------------------------------------------|
| No. | voltage<br>(V)         | Voltage<br>(V) | Current<br>(A) | rating<br>(W) | Efficiency | loss<br>(W) | the last digit to be added is the case number |
| 1   |                        | 15             | 60             | 900           | > 0.95     | 40          | SUR-1014-1560                                 |
| 2   | 10 to 14               | 24             | 24             | 576           | > 0.94     | 40          | SUR-1014-2424                                 |
| 3   |                        | 28             | 18             | 500           | > 0.92     | 40          | SUR-1014-2818                                 |
| 4   | 10 to 20               | 24             | 25             | 600           | > 0.94     | 38          | SUR-1020-2425                                 |
| 5   | 10 (0 20               | 28             | 18             | 500           | > 0.92     | 40          | SUR-1020-2818                                 |
| 6   | 18 to 23               | 24             | 50             | 1200          | > 0.96     | 40          | SUR-1823-2450                                 |
| 7   | 10 (0 23               | 28             | 25             | 700           | > 0.95     | 32          | SUR-1823-2825                                 |
| 8   | 20 to 28               | 36             | 20             | 720           | > 0.94     | 40          | SUR-2028-3620                                 |
| 8a  | 20 to 28               | 48             | 12.5           | 600           | > 0.95     | 32          | SUR-2028-48-12.5                              |
| 9   | 36 to 46               | 56             | 12.5           | 700           | > 0.95     | 32          | SUR-3646-56-12.5                              |
| 10  | <b>45</b> to <b>56</b> | 58             | 40             | 2320          | > 0.98     | 30          | SUR-4556-5840                                 |
| 10a | 46 to 52               | 60             | 50             | 3000          | 0.99       | 31          | SUR-4652-6050                                 |
| 11  | <b>54</b> to <b>69</b> | 72             | 18             | 1296          | > 0.97     | 40          | SUR-5469-7218                                 |
| 11a | <b>40</b> to <b>56</b> | 72             | 14             | 1000          | > 0.97     | 31          | SUR-4056-7214                                 |
| 12  | 345 to 395             | 400            | 5              | 2000          | > 0.98     | 36          | SUR-345395-4005                               |

Other voltages, currents, powers, presentations:  $upon\ request$  Example: 12 to 16V  $\Rightarrow$  24V / 58A / 1400W / efficiency: 0.94 / loss: 90W / brick size

| 0    | Physical characteristics of the 4 cases and last digit for SKU                      |                    |       |        |                                  |        |            |                            |                            |      |
|------|-------------------------------------------------------------------------------------|--------------------|-------|--------|----------------------------------|--------|------------|----------------------------|----------------------------|------|
| Case | Cooling                                                                             | Dimensions<br>(mm) |       |        | Volume<br>without                | Weight | Thermal    | Back mounting              |                            | SKU  |
| No.  | Coming                                                                              | Length             | Width | Thick. | connectors<br>(cm <sup>3</sup> ) | (g)    | resistance | Clip Ω<br>35 mm            | 2 screws / center distance | Cito |
| 1    | Dynamic                                                                             | 96                 | 64    | 61     | 250                              | 380    | 1°C / W    | built-in                   | Ø 4,5 mm /<br>85 mm        | 1    |
| 2    | Independent passive                                                                 | 92                 | 64    | 40     | 100                              | 290    | 6°C / W    | no                         | M3<br>48,2 x 50,8 mm       | 2    |
| 3    | Standard passive                                                                    | 112.6              | 120   | 47     | 500                              | 700    | 1.5°C / W  | added                      | Ø 4,5 mm /<br>90 mm        | 3    |
| 4    | Reinforced passive                                                                  | 225.2              | 120   | 47     | 1000                             | 1150   | 1°C / W    | also possible<br>laterally |                            | 4    |
| Hiç  | High-performance wire-connectors (bridge contact) for sections ≤ 72 mm <sup>2</sup> |                    |       |        |                                  |        |            |                            | m²                         |      |

# (T°) Graphical determination of max. possible ambiant temperature

- Please see on table the order number (1 to 12) of the unit and note the corresponding maximum loss from column 5
- Then check the thermal curve at 13 for the selected case number (1 to 4) as on table 11
- The loss P(W) is proportional to the output power from zero to the maximum value: P(W) = max. loss x output power / power rating
- We read the max. possible ambient temperature from the intersection of the horizontal "loss" with the curve.

#### Examples:

1/ The step-up model "10 à 14V  $\rightarrow$  15V / 60A / 900W" has a maximum loss of 40W. At half-power (loss 20W), for case  $\oplus$ , the max. ambient temperature should be: 70°C At one fourth power (loss 10W), the maximum ambient temperature should be: 80°C 2/ For model No. 10 (58V / 40A / 2320W) with case  $\oplus$ , max. ambient temperature: 60°C at full power (loss 30W) or 70°C at 2/3 power (loss 20W).

| Complete SKU Step-Up Regulator                                                                      | SKU for separate accessories              |                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|--|--|--|--|
| Function + Case type                                                                                | Dissipator alone                          | Matching<br>Clip     |  |  |  |  |
| table 10 + table 11                                                                                 | "112" or "225"<br>(version "S": see § 15) | C112<br>C225<br>C 37 |  |  |  |  |
| Example of SKU for a dynamic cooling case:  No. 1 table 10 6 + No.1 table 11 → SKU: SUR-1014-1560-1 |                                           |                      |  |  |  |  |

# 1 Possible pairings from case 2 of any Step-Up Voltage Regulator

