
www.elecdan-converter.com

Case (1) $250 \mathrm{~cm}^{3} / 380 \mathrm{~g}$

Standard passive dissipation
Case (3) $500 \mathrm{~cm}^{3} / 700 \mathrm{~g}$
(Case (2) + dissipator "112")

Independent passive dissipation

Case (2) $100 \mathrm{~cm}^{3} / \mathbf{2 9 0 g}$

Reinforced passive dissipation

$$
\begin{aligned}
& \text { Case (4) } 1000 \mathrm{~cm}^{3} / 1150 \mathrm{~g} \\
& \text { (Case (2) + dissipator " } 225 \text { ") }
\end{aligned}
$$

(1) Goal

Able to convert a low voltage into higher voltage, within a reduced volume, and with a high efficiency (from 92 to more than 98%), these step-up can advantageously replace conventional dc/dc converters (2) when input/output insulation is not required. Moreover, if your starting current is very high, our technique of elevation enables the switching - almost directly and immediately - from the source (battery) to the load, while a typical converter can collapse. Reinforced switch diode available on request. Examples: $>$ To transform a 12 V battery into a powerful stabilized generator $15 \mathrm{~V} / 900 \mathrm{~W}$ or $24 \mathrm{~V} / 576 \mathrm{~W}$ $>$ To power a vehicle with $24 \mathrm{~V} / 600 \mathrm{~W}$ from the 10 to 20 V of its fuel-cell
$>$ To operate a solar pump at constant speed, under 24V/1.2kW, from 18 to 23 V
$>$ To stabilize, at $400 \mathrm{~V} / 2 \mathrm{~kW}$, a 370 V generator whose voltage varies from 345 V to 395 V
$>$ To overcome the high starting current of an engine (ex: Maxon 24V/9.15A/212A) from a 12V battery

General presentation

The active part of the regulator (i.e. not counting high-performance screw connectors for wires of section $\leq 72 \mathrm{~mm}^{2}$) measures $64 \times 64 \mathrm{~mm}$, and is thus compatible with regular half-brick modules. Depending on the cooling method (dynamic or passive) chosen by the customer when ordering, the complete regulator shall have one of the 4 following shapes:
(1) Integrated dynamic cooling Case (1) : equipped with a small built-in fan, fast racking-out for fan replacement directly by the user after 50,000 hours (this case (1) is 4 times smaller than case (4), which is of the same power but cooled by natural convection)
(2) Independant passive dissipation Case (2) : the user places the elevator's thermal interface against a heat conducting wall whose thermal resistance is $\leq 1.5^{\circ} / \mathrm{W}$

(3) Standard passive dissipation Case (3) : case (2) equipped with a "112" dissipator

 can be mounted on DIN rail; enhanced cooling if the whole unit is screwed on heat conducting wall N.B.: the picture represents the regulator (2) deeply embedded in its "112" dissipator[^0]Electrical data
$>$ Power output (Pout): from 500W up to 2.32 kW with twelve product references
$>$ Input voltage "Vin": ranging from 10 V to 400 V dc depending on the unit as seen on table 10
$>$ Common input and output, occupying the 2 " - " connection terminals
$>$ Output voltage "Vout": ranging from de 15 V to 400 V (always higher than the maximum input voltage)
$>$ Input currents: 95A max (unit 10V to $14 \mathrm{~V} \rightarrow 15 \mathrm{~V} / 900 \mathrm{~W}$)
$>$ No-load current: $\leq 6 \mathrm{~W} / \mathrm{Vin}$; fan's power on case (1) : $\approx 5 \mathrm{~W}$
$>$ Minimum load current: zero to $\leq 100 \mathrm{~mA}$ depending on the model
$>$ Line + load regulation: better than 2%; dynamic answer < 5\% / <50ms
$>$ Efficiency at full load: 92% to $>98 \%$, depending on the model
$>$ Ripple: less than 1% of Vout; fixed switching frequency $\mathbf{>} \mathbf{2 0 0 k H z}$

4 Protections

$>$ Limited overloads: as long as decreasing Vout remains $\geq \mathrm{Vin}+0.5 \mathrm{~V}$
$>$ Abnormal overloads: please add a fuse or current-limiter on the output or input
$>$ Under-voltage or sufficient input over-voltage: the regulator no longer elevates the input voltage $>$ Filters: input and output; shields: two parallel metallic plates
$>$ Thermal protection: lowering of V out to $\approx \mathrm{Vin}-0.5 \mathrm{~V}$ (automatic reset)
$>$ Vibrations, tropicalisation, IP63 to IP67 sealing, except the fan. Stain/ess steel for the high-performance wire-connectors
$>$ Ohmic wire loss reduction, with connectors receiving sections up to $\mathbf{7 2 m m}{ }^{2}$
$>$ The dynamic dissipation model is equipped with a highly reliable fan (50,000 hours)
5 Thermal characteristics (see table 13 with curves to read losses depending on ambient temperature)
$>$ All models can work with ambient temperature from $-40^{\circ} \mathrm{C}$ up to $+90^{\circ} \mathrm{C}$ at decreasing power (except the dynamic dissipation model: from $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
$>$ Models (1), (3) and (4) can work at half-power when the temperature $\geq 60^{\circ} \mathrm{C}$
$>$ Storage temperature: $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ for models (2), (3) and (4)
$>$ Temperature coefficient: $2.10^{-4} /{ }^{\circ} \mathrm{C}$

6 Options on request

$>$ Remote sensing: 2 miniature connection points
$>$ Shifting of the input range: 3 connections (please contact us for further details)
$>$ Other input and output voltages $\leq 400 \mathrm{~V}$
$>$ Other output powers, below 2.32 kW
$>$ Inhibition of the "step-up" function: 2 connections
$>$ Control of the current limitation on the "step-up" range
$>$ Customizable colors and texts for cases
>Reinforced switch diode for very high starting current
7 Mechanical presentation: 4 configurations (see $2+11$ and the 4 pictures below)
$>$ Case (1) $250 \mathrm{~cm}^{3} / 380 \mathrm{~g} / 96 \times 64 \times$ thickness 61 mm ; equipped with an integrated dynamic cooling
$>$ Case (2) $100 \mathrm{~cm}^{3} / 290 \mathrm{~g} / 92 \times 64 \times$ thickness 40 mm ; alone (without dissipator); screwable on a functional dissipating wall or on one of the two available dissipators (length 112.6 mm or 225.2 mm)
$>$ Case (3) $500 \mathrm{~cm}^{3} / 700 \mathrm{~g} / 112.6 \times 120 \times$ thickness 47 mm ; case (2) deeply embedded
in the short dissipator; with clip on the back for DIN rail Ω (or with lateral side clip upon request)
$>$ Case (4) $1000 \mathrm{~cm}^{3} / \mathbf{1 1 5 0 g} / 225.2 \times 120 \times$ thickness 47 mm ; case (2) deeply embedded in the long dissipator; with clip on the back for DIN rail Ω (or with lateral side clip upon request)

8 Mechanical specifications

$>$ Connections through large high-performance connectors enabling wire sections up to $72 \mathrm{~mm}{ }^{2}$ $>$ Fan (MTBF $50,000 \mathrm{~h}$) included in case (1) $250 \mathrm{~cm}^{3}$ ": easily dismountable
$>$ All cases can be fixed on a wall with two screws (center distances: 85/90/48.2 x 50.8 mm)
$>$ High volume saving if the user already has a thermally dissipating functional wall
9 Standards and specifications
$>$ Marking CE/UL 60950-1 / EN 60950-1 / iEC 60950-1 / RoHS / 55022A if optional external filter > Flammability: horizontal test for electrical applications, according to UL 94 HB standard
$>$ MTBF (case at $50^{\circ} \mathrm{C}$): passive dissipation models $>120,000$ hours / dynamic version with fan: $\mathbf{5 0 , 0 0 0}$ hours
$>$ Worldwide manufacturers for active parts. Patent, assembling and final controls: ELECDAN Converter

Maximum ambient temperature for the 4 models, depending on losses.
Result from graphic display or lineal equation.

10 Step-Up Voltage Regulator 500 W to 2.32 kW and main SKU

No.	Input voltage (V)	Output 2				$\begin{array}{\|c\|} \hline 5 \\ \text { Max. } \\ \text { loss } \\ (\mathrm{W}) \\ \hline \end{array}$	SKU the last digit to be added is the case number
		Voltage (V)	Current (A)				
1	10 to 14	15	60	900	>0.95	40	SUR-1014-1560....
2		24	24	576	>0.94	40	SUR-1014-2424....
3		28	18	500	>0.92	40	SUR-1014-2818....
4	10 to 20	24	25	600	> 0.94	38	SUR-1020-2425....
5		28	18	500	>0.92	40	SUR-1020-2818....
6	18 to 23	24	50	1200	>0.96	40	SUR-1823-2450..
7		28	25	700	>0.95	32	SUR-1823-2825....
8	20 to 28	36	20	720	>0.94	40	SUR-2028-3620..
8a	20 to 28	48	12.5	600	>0.95	32	SUR-2028-48-12.5....
9	36 to 46	56	12.5	700	>0.95	32	SUR-3646-56-12.5....
10	45 to 56	58	40	2320	>0.98	30	SUR-4556-5840....
10a	46 to 52	60	50	3000	0.99	31	SUR-4652-6050....
11	54 to 69	72	18	1296	>0.97	40	SUR-5469-7218....
11a	40 to 56	72	14	1000	>0.97	31	SUR-4056-7214....
12	345 to 395	400	5	2000	>0.98	36	SUR-345395-4005.

Other voltages, currents, powers, presentations: upon request Example: 12 to $16 \mathrm{~V} \rightarrow 24 \mathrm{~V} / 58 \mathrm{~A} / 1400 \mathrm{~W} /$ efficiency: 0.94 / loss: $90 \mathrm{~W} /$ brick size

(11) Physical characteristics of the 4 cases and last digit for SKU										
Case No.	Cooling	Dimensions (mm)			Volume without connectors (cm^{3})	Weight (g)	Thermal resistance	Back mounting		SKU
		Length	Width	Thick.				Clip Ω 35 mm	2 screws / center distance	
1	Dynamic	96	64	61	250	380	$1^{\circ} \mathrm{C} / \mathrm{W}$	built-in	$\begin{gathered} \varnothing 4,5 \mathrm{~mm} / \\ 85 \mathrm{~mm} \end{gathered}$	1
2	Independent passive	92	64	40	100	290	$6^{\circ} \mathrm{C} / \mathrm{W}$	no	$\begin{gathered} \mathrm{M} 3 \\ 48,2 \times 50,8 \mathrm{~mm} \end{gathered}$	2
3	Standard passive	112.6	120	47	500	700	$1.5{ }^{\circ} \mathrm{C} / \mathrm{W}$	added also possible laterally	$\begin{gathered} \varnothing 4,5 \mathrm{~mm} / \\ 90 \mathrm{~mm} \end{gathered}$	3
4	Reinforced passive	225.2	120	47	1000	1150	$1^{\circ} \mathrm{C} / \mathrm{W}$			4
High-performance wire-connectors (bridge contact) for sections $\leq 72 \mathrm{~mm}^{2}$										

Graphical determination of max. possible ambiant temperature (T°)
$>$ Please see on table 10 the order number (1 to 12) of the unit and note the corresponding maximum loss from column 5
$>$ Then check the thermal curve at 13 for the selected case number (1 to 4) as on table 11
$>$ The loss $\mathrm{P}(\mathrm{W})$ is proportional to the output power from zero to the maximum value: $P(W)=$ max. loss x output power / power rating
$>$ We read the max. possible ambient temperature from the intersection of the horizontal "loss" with the curve.

Examples:

1/ The step-up model "10 à $14 \mathrm{~V} \rightarrow 15 \mathrm{~V} / 60 \mathrm{~A} / 900 \mathrm{~W}$ " has a maximum loss of 40 W . At half-power (loss 20W), for case (4), the max. ambient temperature should be: $70^{\circ} \mathrm{C}$ At one fourth power (loss 10W), the maximum ambient temperature should be: $80^{\circ} \mathrm{C}$ 2/ For model No. 10 ($58 \mathrm{~V} / 40 \mathrm{~A} / 2320 \mathrm{~W}$) with case (1), max. ambient temperature $60^{\circ} \mathrm{C}$ at full power (loss 30 W) or $70^{\circ} \mathrm{C}$ at $2 / 3$ power (loss 20 W).

14 Complete SKU Step-Up Regulator	SKU for separate accessories	
Function + Case type	Dissipator alone	Matching Clip
table 10 + table 11	"112" or "225" (version "S": see § 15)	C112 C225 C 37

Example of SKU for a dynamic cooling case:
No. 1 table 106 + No. 1 table $11 \rightarrow$ SKU: SUR-1014-1560-1

[^0]: (4) Reinforced passive dissipation With "225" dissipator (2 times longer than "112", same section)

